

YourSiloSoftware

01

is an experienced team with a network of professionals in grain silo storage and processing..

02

is designer and supplier independent, ensuring complete neutrality.

03

uses practical experience with diverse customers to understand each unique circumstance.

04

adeptly handles diverse requests spanning practical, technical, commercial, and R&D areas.

05

uses deep grain storage
expertise to assist industries in
technical solutions, improving
grain management, and reducing
cereal losses.

Introduction

YSS-SILOS 3D - V.2020

Major manufacturers buy foreign companies to enhance local presence.

Local businesses invest in silos and grain technology.

Traditional importing regions aim to develop their own technology.

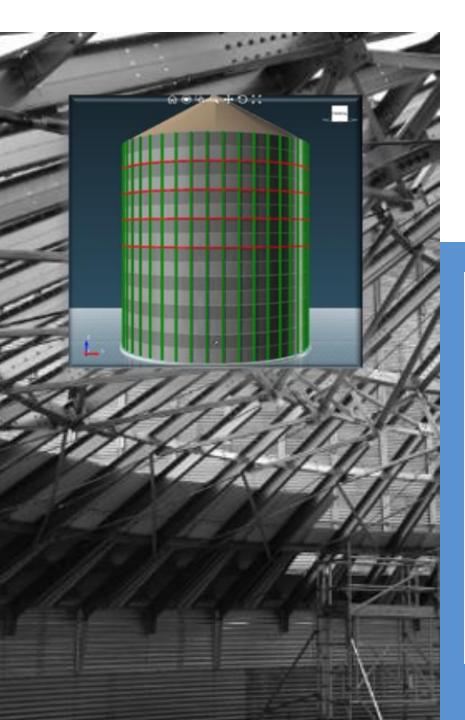
Introduction

YSS-SILOS 3D - V.2020

Full compliance with international norms and

standards is required.

Compliance is necessary for authorities,


insurance, and corporate governance.

Quick, accurate offers and technical

documentation support are demanded.

Customized grain silo calculation tool

YSS-SILOS 3D - V.2020

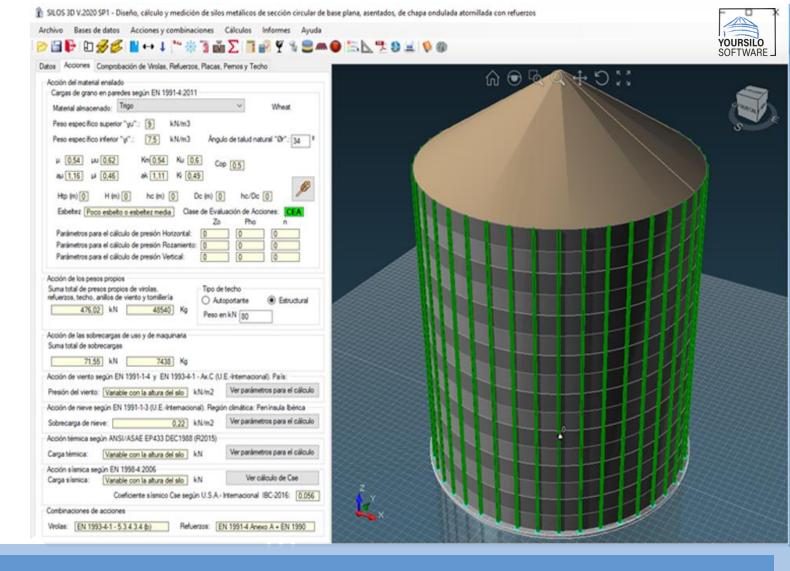
Designs, calculates, verifies, and measures silo components

Wall sheets and their vertical and horizontal bolted joints.

Vertical stiffeners

Base plates to join these vertical stiffeners to the foundation

Anchor bolts on the base plates

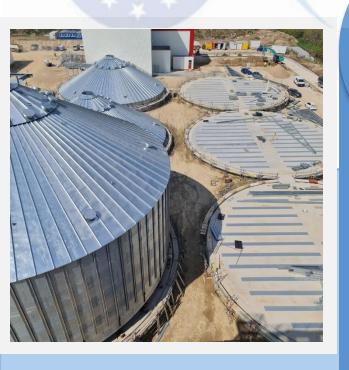


Foundation loads to be sent to civil works in order to calculate the silo foundation.

Silo Calculation Tool

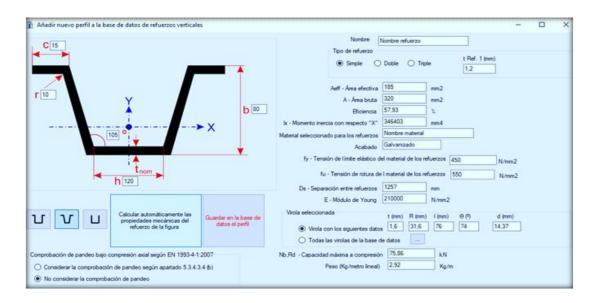
Generate your silo model and / or silo range

Due to the flexibility of the calculation program it can be fully customized, e.g by including company specific costing date base, so a specific report can return a complete costing report.

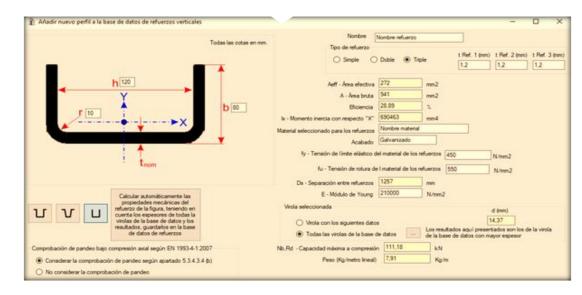

Report on all sheet and stiffener thickness

Standard Calculation Norms

eurocodes

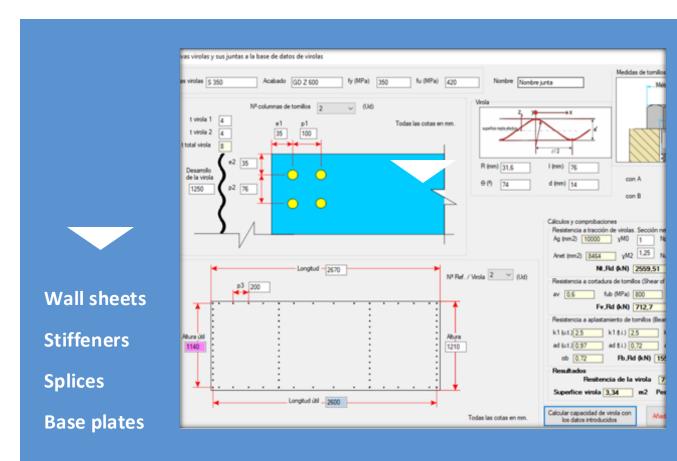

Grain loads to ANSI
ASAE or to
EUROCODE UNEEN
1991

External Actions:
Wind loads to
various norms: ANSI
ASAE / EUROCODE

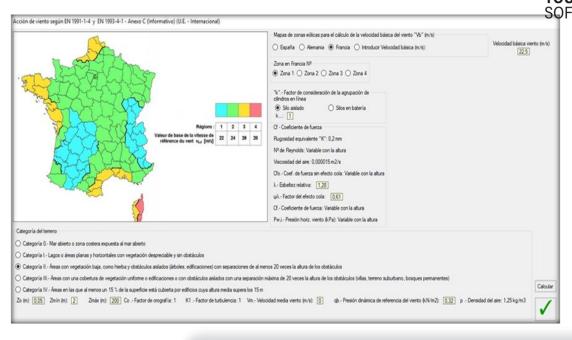

External Actions:
Snow loads to
various norms: ANSI
ASAE / EUROCODE

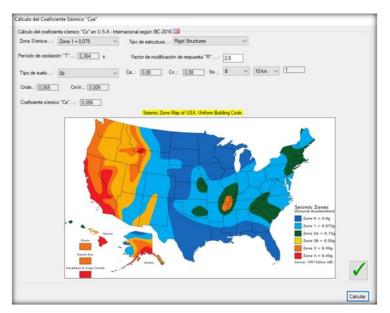
External Actions:
Seismic loads to
various norms: ANSI
ASAE / EUROCODE

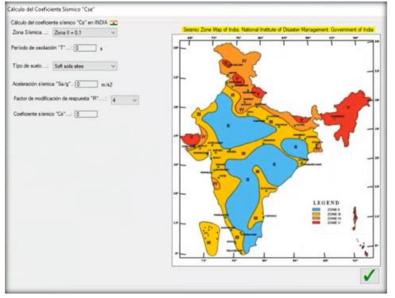
If required other norms can be studies and implemented


Define your main material parameter

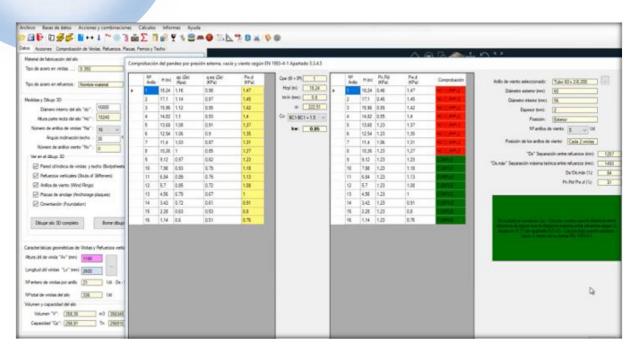
Define your main silo components

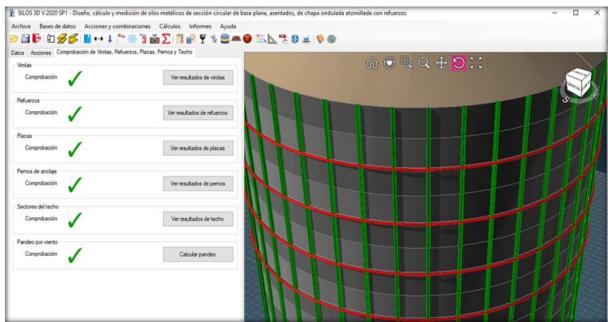



YSS-SILOS 3D - V.2020



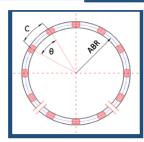
YSS-SILOS 3D - V.2020




- For the silo calculation define the required standards
- If you miss a specific regional standard it can be studied and impletented
- The standardd version includes a signifficant amount of international maps that can be accessed

Perform the silo calculation and confirm various tecnical parameters on compliance

YSS-SILOS 3D - V.2020



Example of failed buckling verification

Silo compliant on all positions

5.- FOUNDATION LOADS

	FORCES PER STRUT			OVERALL FORCE AND MOMENTS	
LOAD SUMMARY	Maximum Vertical Load N _c (kN/strut)		Maximum Horizontal	Maximum Horizontal	Overturning Moment
	(+)	(-)	Load V _c (kN/strut)	Load V _c (kN)	M _t (kN·m)
Self Weight	13.3	-	-	-	-
Grain (Filling)	918.5	-		-	-
Grain (Discharge)	1159.3	-	-	-	-
Wind	57.8	-57.8	12.5	326.1	4884.7
Snow	9.0	-	-	-	-
Imposed Load	3.4	-		-	-
Catwalk Loads	44.5	-		-	-
Seismic (Full Silo)	0.0	0.0	0.0	0.0	0.0
Seismic (Empty Silo)	0.0	0.0	0.0	0.0	0.0

PRESSURE ON BOTTO

109.6 kPa

MAIN FOUNDATION DIMENSIONS

Anchor Bolt Radius (ABR)	ABR = 6.615 m	
Chord "C"	1.599 m	
Angle θ	13.8 9	
Number of Struts	26	
Number of Base Plates	26	
Anchor Bolt / Base Plate	1	

2.4.1.2. LOADS ON VERTICAL WALLS: METHOD FOR SLENDER SILOS (EN 1991-4 5.2)

.- SYMMETRICAL FILLING PRESSURES

The symmetrical filling load (for each depth z as per the reference system shown in the figure below) shoul be calculated using the following expressions:

Frictional Pressure	$p_{wf}(z) = \mu_w p_{hf}$
Vertical Pressure	$p_{vf}(z) = p_{hf}/K$

vei

 $Y_j(z) = 1 - e^{-\frac{z}{z_0}}$

Janssen characteristic depth

(With A and U the area and the internal perimeter of the plan cross section of the vertical segment of the slip)

Asymptotic horizontal pressure at great depth due to stored particulate solid

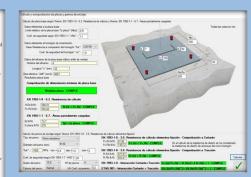
$p_{ho} = \gamma_u K z_o$

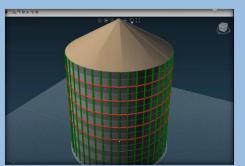
The resulting characteristic value of the vertical force (compressive) in the wall F_{set} per unit length of perimeter after filling at any depth z should be determined as:

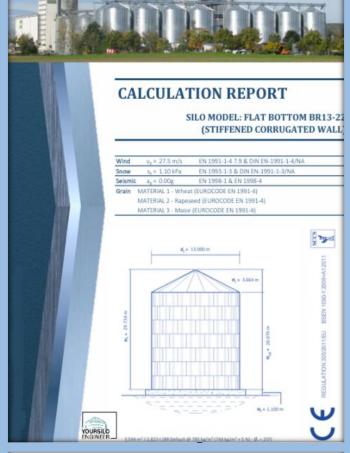
 $F_{wf} = \int_{0}^{z} p_{wf}(z)dz = \mu_{w}p_{ho}[z - z_{o}Y_{f}(z)]$

Note: The characteristic values (upper/lower) of the material properties K and μ_{rr} to be adopted when calculating the symmetrical filling pressures should be those indicated in Section 2.4.1.1.

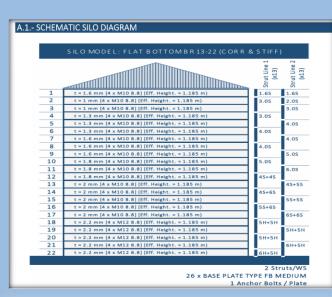
.- FILLING PATCH LOAD


The filling patch load shall be used to represent accidental asymmetries of loading associated with eccentricities and imperfections in the filling process. For silos in AAC 2 and AAC 3, a local asymmetric horizontal pressure distribution (patch load) need to be added to the symmetring pressure distribution. This load is applied at any depth z in the silo and the height of the zone on which the patch load is applied should be taken as s = 0.2d_o. The values of this asymmetric pressure distribution are determined as follows:


 $p_{pf}(z) = C_{pf}p_{hf}(z)$


 $p_{pfs}(z) = p_{pf}(z)co$

With:


 $= 0.21C_{op} \left[1 - 2 \left(\frac{2e_f}{d_c} \right)^2 \right] \left[1 - e^{-1.5(h_c/d_c - 1)} \right]$

Generate your reports:

Wall sheet and stiffener distribution

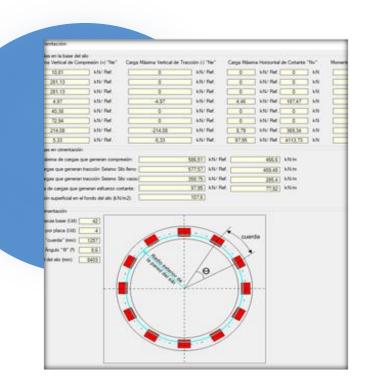
Foundation loads

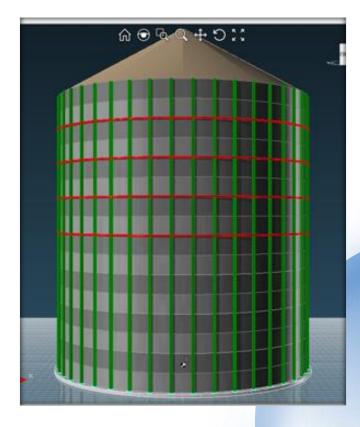
Full calcualtion report

Weigth by components and totals

3d lay out of the sild

Costing reports


Any other you might require


Manufacturing references

Your Benefits at a Glance

- Easy to configure tool
- Quick set up
- Update of standard norms
- Modify your components to check improvements in silo design
- Easily generate reports for authorities

- Quick turn around for new silo models
- No in deep norm knowledge required
- No costly self developments
- Proven tool
- No charge for updates during the first year

Why should you invest in YSS SILOS 3D?

OPTIMIZE YOUR SILO DESIGN

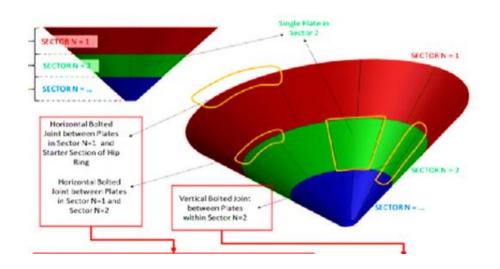
Optimizing the silo design means reducing its weight, thereby enhancing your competitiveness

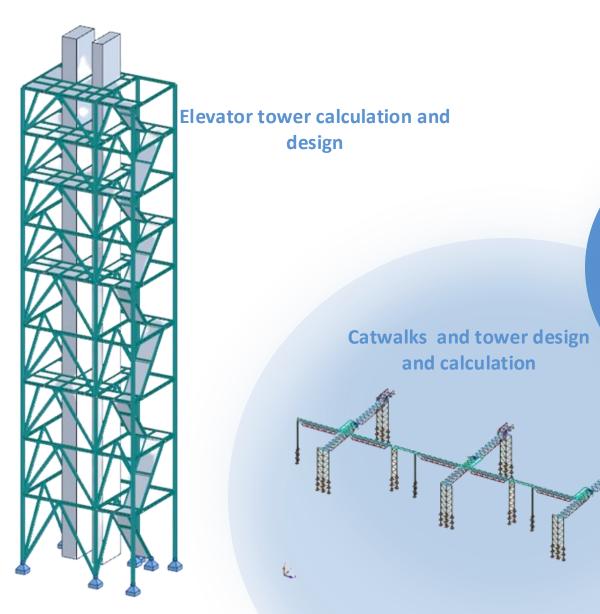
MANUFACTURED ACCORDING TO STANDARS

For the same silo model, one customer may ask us for European standards, and another for American standards, or Indian, etc... YSS Silos 3D calculates your silo based your needs

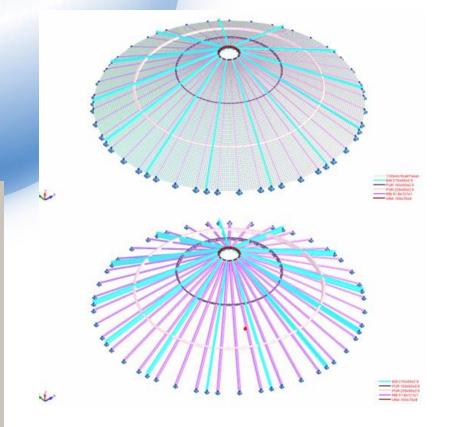
CALCULATION REPORTS

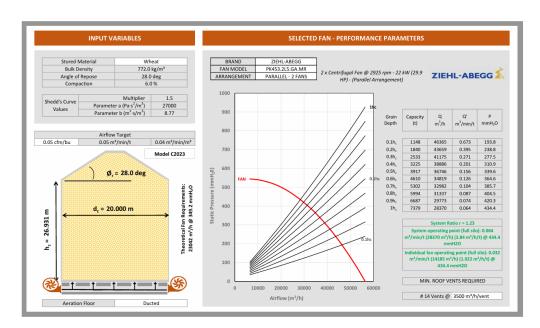
Nowadays, numerous clients are requesting calculation reports for insurance companies and others. Silos 3D will issue a calculation report for each of your generated models. Offer confidence to your customer.


DESIGN BASED ON NEED


The same silo model sold to a customer in Japan is not the same silo sold to a customer in France, the risks of earthquakes, wind and snow loads will be different, which translates into different characteristics, which YSS Silos 3D calculates in a matter of seconds.

Silo Hopper design and calculation





Other Engineering Tools and Services

Silo roof, calculation, design & redesign

Squares silos, pressure vessels and vertical tanks calculation software

Silo aeration calculation tools for different grains and types of fans

Contacts

AgroInPro Delegations

Asia - Pacific

Singapore

20, Collyer Quay #09-01 049319, Singapore

Viet Nam

6/4 Nguyen U Di Street Ho Chi Minh City, Viet Nam

Europe

Spain

C/ Donoso Cortés, 2 06400, Don Benito, Spain

Hungary

Nyugati tér 9. tetőtér 4 1055 - Budapest, Hungary

Contact info QR:

General Director

Phone: +34 620 209 100 Phone: +84.9 42 42 42 71 E-mail: LSJ@agroinpro.com

Sales Manager

Phone: +34 682 58 98 26 E-mail: commercial@agroinpro.com

